Prerequisites
- Ensure you have an IBM Cloud account and have set up IBM Watson services that you plan to use, such as IBM Watson Assistant or IBM Watson Natural Language Understanding.
- Have Zoom API Credentials (API Key and API Secret), which can be set up via Zoom's Marketplace after creating an app under "Build App."
- Basic knowledge of Python (or another programming language) to create a middleware that handles the integration.
Set Up Your Python Environment
- Ensure Python is installed on your machine. It's recommended to use Python 3.x for this integration.
- Create a virtual environment to maintain dependencies:
python3 -m venv zoom-watson-env
source zoom-watson-env/bin/activate
- Install necessary libraries using pip:
pip install ibm-watson zoomus flask
Initialize IBM Watson SDK
- Once dependencies are installed, create a new Python script named `watson_integration.py`.
- Import and set up the IBM Watson services in the script:
from ibm_watson import AssistantV2
from ibm_cloud_sdk_core.authenticators import IAMAuthenticator
# Configure Watson Assistant
authenticator = IAMAuthenticator('YOUR_IBM_WATSON_API_KEY')
assistant = AssistantV2(
version='2022-02-15',
authenticator=authenticator
)
assistant.set_service_url('YOUR_IBM_WATSON_URL')
Initialize Zoom SDK
- Integrate Zoom's SDK by importing and configuring it within the same script:
from zoomus import ZoomClient
# Initialize Zoom client
zoom_client = ZoomClient('YOUR_ZOOM_API_KEY', 'YOUR_ZOOM_API_SECRET')
Set Up Middleware
- Utilize Flask to create a simple web server that listens for Zoom webhook events, processes them with IBM Watson, and possibly sends responses back to Zoom:
from flask import Flask, request, jsonify
app = Flask(__name__)
@app.route('/zoom-webhook', methods=['POST'])
def zoom_webhook():
data = request.json
event_type = data.get('event')
if event_type == 'meeting.participant_joined':
# Process participant joined event
user_data = data['payload']['object']['participant']['user_name']
handle_user_joined(user_data)
return jsonify({'status': 'success'}), 200
Handling User Events
- Create a function to handle event data using IBM Watson's capabilities:
def handle_user_joined(user_name):
# Sample interaction with Watson Assistant
session_response = assistant.create_session(
assistant_id='YOUR_ASSISTANT_ID'
).get_result()
message_response = assistant.message(
assistant_id='YOUR_ASSISTANT_ID',
session_id=session_response['session_id'],
input={'text': f'{user_name} has joined the meeting'}
).get_result()
print(message_response['output']['generic'][0]['text'])
Testing the Integration
- Use ngrok to expose your Flask server to the internet, allowing Zoom to send webhooks:
ngrok http 5000
- Copy the `ngrok` URL and use it as the webhook endpoint in the Zoom app configuration at Zoom Marketplace.
- Test by starting a Zoom meeting and observing the processed data through `print` statements or logs.