Prerequisites
- Create accounts on both Meta AI and SurveyMonkey platforms. Ensure you have administrative or developer access needed to configure APIs.
- Install necessary software like a code editor and ensure your development environment is configured to handle API calls (e.g., Node.js, Python).
Get API Credentials from both Platforms
- Log in to your Meta AI account and navigate to the developer section to create a new application. Note down the API key and secret.
- In your SurveyMonkey account, go to the 'Developers' section to generate an API application. Copy the API key and token details.
Set Up Your Development Environment
- Initialize a new project in your preferred language. Below is an example setup for a Node.js environment:
mkdir meta-surveymonkey-integration
cd meta-surveymonkey-integration
npm init -y
- Install necessary libraries to make API requests:
npm install axios dotenv
- Create a `.env` file for environment variables storage. Define your API keys, secrets, and tokens in this file:
META_API_KEY=your_meta_api_key
META_API_SECRET=your_meta_api_secret
SURVEYMONKEY_API_TOKEN=your_surveymonkey_token
Create a Function to Fetch Data from SurveyMonkey
- Create a JavaScript file `surveyMonkey.js` and add the following code to make a request to SurveyMonkey’s API:
require('dotenv').config();
const axios = require('axios');
const fetchSurveyResponses = async () => {
const url = 'https://api.surveymonkey.com/v3/surveys/{survey_id}/responses';
try {
const response = await axios.get(url, {
headers: {
'Authorization': `Bearer ${process.env.SURVEYMONKEY_API_TOKEN}`,
'Content-Type': 'application/json'
}
});
return response.data;
} catch (error) {
console.error('Error fetching data from SurveyMonkey:', error);
}
};
module.exports = fetchSurveyResponses;
Integrate with Meta AI
- Create another JavaScript file `metaAI.js` where you will use Meta AI API to process the data fetched from SurveyMonkey:
require('dotenv').config();
const axios = require('axios');
const fetchSurveyResponses = require('./surveyMonkey');
const metaAIProcess = async () => {
const surveyData = await fetchSurveyResponses();
const metaAIUrl = 'https://api.meta.ai/your-endpoint';
try {
const response = await axios.post(metaAIUrl, {
data: surveyData
}, {
headers: {
'Authorization': `Bearer ${process.env.META_API_KEY}`,
'Content-Type': 'application/json'
}
});
console.log('Processed data by Meta AI:', response.data);
} catch (error) {
console.error('Error processing data with Meta AI:', error);
}
};
metaAIProcess();
Run Your Integration
- Use your command line to run the JavaScript files and execute the data integration process:
node metaAI.js
- Review the console output to confirm successful data retrieval and processing through Meta AI.
Troubleshooting and Optimization
- Ensure all API endpoints and credentials are correct and that their associated services are up and running.
- Monitor response times and handle response data efficiently to optimize the integration performance.