Prerequisites
- Create accounts on both OpenAI and IBM Watson platforms if you haven't already.
- Obtain API keys from both OpenAI and IBM Watson for authentication purposes.
- Install the necessary SDKs for both OpenAI and IBM Watson using your preferred package manager.
pip install openai ibm-watson
Set Up Your Environment
- Securely store your API keys and access them via your application. You can use environment variables or a configuration file for this purpose.
- Ensure that your environment is equipped with Python 3.6+ to support the libraries.
import os
from openai import OpenAIAPI
from ibm_watson import AssistantV2
openai_api_key = os.getenv("OPENAI_API_KEY")
ibm_watson_api_key = os.getenv("IBM_WATSON_API_KEY")
Initialize Clients
- Initialize the OpenAI and IBM Watson clients using the stored API keys. Set up any necessary configurations like service URLs for IBM Watson.
# OpenAI Client Initialization
openai_client = OpenAIAPI(api_key=openai_api_key)
# IBM Watson Client Initialization
ibm_assistant = AssistantV2(
version='2021-06-14',
iam_apikey=ibm_watson_api_key,
url='https://api.us-south.assistant.watson.cloud.ibm.com'
)
Create a Function to Call OpenAI API
- Design a function that can send text prompts to OpenAI and handle the response as needed. Customize parameters for your specific use case.
def query_openai(prompt):
response = openai_client.Completion.create(
engine="text-davinci-002",
prompt=prompt,
max_tokens=150
)
return response.choices[0].text.strip()
Create a Function to Call IBM Watson API
- Create another function to interact with IBM Watson, sending requests and managing the responses appropriately.
def query_ibm_watson(session_id, message):
response = ibm_assistant.message(
assistant_id='your-assistant-id',
session_id=session_id,
input={
'message_type': 'text',
'text': message
}
).get_result()
return response['output']['generic'][0]['text']
Integrate Both APIs
- Implement a workflow that integrates both APIs. Use OpenAI's response as input for IBM Watson or vice versa, depending on your integration needs.
def integrated_workflow(prompt):
openai_response = query_openai(prompt)
session_id = ibm_assistant.create_session(assistant_id='your-assistant-id').get_result()['session_id']
ibm_response = query_ibm_watson(session_id, openai_response)
return ibm_response
Test the Integration
- Test the workflow end-to-end to ensure successful integration. Print the final response or handle it according to your application logic.
if __name__ == "__main__":
prompt = "How does OpenAI and IBM Watson integration work?"
result = integrated_workflow(prompt)
print("Final Output from IBM Watson:", result)
Refine and Optimize
- Analyze performance and cost metrics. Adjust the number of tokens, response handling, and other parameters as needed.
- Implement error handling for API downtimes or rate limits.
try:
result = integrated_workflow(prompt)
print("Final Output from IBM Watson:", result)
except Exception as e:
print("An error occurred:", e)