Setting Up Your Environment
- Create a Microsoft Azure account if you haven't already and log in to the Azure portal.
- Ensure you have Visual Studio Code installed, along with the Azure Extensions for streamlined integration.
- Install the Azure CLI from here to manage Azure resources using command line tools.
- Ensure you have Python and PyTorch installed in your development environment. You can follow the installation guide on PyTorch's official site.
Creating a PyTorch Model for Deployment
- Develop a simple PyTorch model. Below is an example of a basic PyTorch model:
import torch
import torch.nn as nn
import torch.optim as optim
class SimpleModel(nn.Module):
def __init__(self):
super(SimpleModel, self).__init__()
self.linear = nn.Linear(10, 1)
def forward(self, x):
return self.linear(x)
# Train your model here
model = SimpleModel()
Containerizing the PyTorch Model
- Create a Dockerfile to containerize your model application. Below is an example:
FROM pytorch/pytorch:latest
COPY . /app
WORKDIR /app
RUN pip install -r requirements.txt
CMD ["python", "your_model_script.py"]
docker build -t pytorch-model .
- Test your Docker image locally to ensure everything is set up correctly:
docker run -p 5000:5000 pytorch-model
Pushing Docker Image to Azure Container Registry
- Create an Azure Container Registry via the Azure portal or Azure CLI:
az acr create --resource-group <yourResourceGroup> --name <yourRegistryName> --sku Basic
- Log in to your Azure Container Registry:
az acr login --name <yourRegistryName>
- Tag your Docker image for Azure Container Registry:
docker tag pytorch-model <yourRegistryName>.azurecr.io/pytorch-model
- Push your Docker image to the Azure Container Registry:
docker push <yourRegistryName>.azurecr.io/pytorch-model
Deploying the Image to Azure Kubernetes Service
- Create an AKS cluster if you don't have one:
az aks create -g <yourResourceGroup> -n <yourClusterName> --node-count 1 --enable-addons monitoring --generate-ssh-keys
- Connect kubectl to your AKS cluster:
az aks get-credentials --resource-group <yourResourceGroup> --name <yourClusterName>
- Create a Kubernetes deployment yaml file for your PyTorch model. Example:
apiVersion: apps/v1
kind: Deployment
metadata:
name: pytorch-model-deployment
spec:
replicas: 1
selector:
matchLabels:
app: pytorch-model
template:
metadata:
labels:
app: pytorch-model
spec:
containers:
- name: pytorch-model
image: <yourRegistryName>.azurecr.io/pytorch-model
ports:
- containerPort: 5000
- Apply the Kubernetes deployment:
kubectl apply -f pytorch-deployment.yaml
- Expose your deployment as a service:
kubectl expose deployment pytorch-model-deployment --type=LoadBalancer --name=pytorch-model-service
Testing and Monitoring Your Deployment
- Retrieve the external IP for your service and test your model's API endpoint.
- Use Azure Monitor for container insights to review logs and performance metrics.